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The Escherichia coli AcrAB-TolC efflux pump is the archetype of the
resistance nodulation cell division (RND) exporters from Gram-neg-
ative bacteria. Overexpression of RND-type efflux pumps is a major
factor in multidrug resistance (MDR), which makes these pumps
important antibacterial drug discovery targets. We have recently
developed novel pyranopyridine-based inhibitors of AcrB, which
are orders of magnitude more powerful than the previously known
inhibitors. However, further development of such inhibitors has
been hindered by the lack of structural information for rational
drug design. Although only the soluble, periplasmic part of AcrB
binds and exports the ligands, the presence of the membrane-
embedded domain in AcrB and its polyspecific binding behavior
have made cocrystallization with drugs challenging. To overcome
this obstacle, we have engineered and produced a soluble version
of AcrB [AcrB periplasmic domain (AcrBper)], which is highly congru-
ent in structure with the periplasmic part of the full-length protein,
and is capable of binding substrates and potent inhibitors. Here, we
describe the molecular basis for pyranopyridine-based inhibition of
AcrB using a combination of cellular, X-ray crystallographic, and mo-
lecular dynamics (MD) simulations studies. The pyranopyridines bind
within a phenylalanine-rich cage that branches from the deep binding
pocket of AcrB, where they form extensive hydrophobic interactions.
Moreover, the increasing potency of improved inhibitors correlates
with the formation of a delicate protein- and water-mediated hydro-
gen bond network. These detailed insights provide a molecular plat-
form for the development of novel combinational therapies using
efflux pump inhibitors for combating multidrug resistant Gram-
negative pathogens.
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Overexpression of resistance nodulation cell division (RND)-
type efflux pumps is a major factor in multidrug resistance

(MDR) in Gram-negative pathogens (1). These pumps recognize and
extrude a chemically diverse compound range from the periplasm to
the exterior of the cell (2). The major efflux pump of Escherichia coli,
AcrAB-TolC, is the prototypical RND family pump system (3). It
comprises a tripartite structure consisting of the integral membrane
transporter AcrB; the outer membrane channel TolC; and the peri-
plasmic protein adaptor AcrA, which stabilizes the interaction be-
tween AcrB and TolC (4). The AcrB transporter functions as an
asymmetrical homotrimer (5–7) in which each protomer adopts a
different conformation that represents a distinct step in the trans-
location pathway (8–10). The individual protomer conformations of
the pump have been described as loose (L), tight (T), and open (O),
which correspond to the initial interaction, poly-specific binding, and
extrusion of substrates to the TolC channel, respectively (11). The
conformational changes are driven by the proton motive force, which
is transduced by the AcrB transmembrane domain (10, 12). Orthologs
of AcrB are present in all of the emerging Gram-negative pathogens,
including Pseudomonas aeruginosa, where the MexAB-OprM and
MexXY-OprM pumps play an important role for MDR (13).
One class of efflux pump inhibitors (EPIs) that have been de-

veloped against RND pumps for clinical use within the past 15 y (14)

are peptidomimetic compounds derived from the Phe-Arg β-naph-
thylamide (PAβN) (15). They inhibit RND efflux pumps from a
broad spectrum of Gram-negative bacteria, but they are required at
relatively high concentrations (e.g., 50 μM) and could not be de-
veloped for clinical use because of the issues of tissue accumulation
(16). Other inhibitors that show broad activity are aryl-piperazines
exemplified by 1-(1-naphthylmethyl)piperazine (NMP), but they
show full activity only at high concentrations (≥50 μM) (17). For
P. aeruginosa, tert-butylthiazolyl aminocarboxyl pyridopyrimidines
(e.g., D13-9001) are effective (18), but their activity apparently relies
on the utilization of specialized outer membrane channels for up-
take, and they do not show much activity for Enterobacteriaceae.
Further, the pyridopyrimidines do not inhibit MexY, and this
property has hindered their further development (19). Crystal
structures of D13-9001 bound to AcrB and MexB demonstrated
binding to a unique site near the substrate deep binding pocket
in the periplasmic domain known as the hydrophobic trap (20).
The discovery of the hydrophobic trap is a significant advance,
because it will enable the design of EPIs with increased potency.
We previously described a novel EPI, MBX2319, comprising a

pyranopyridine core with five substituents around the core (Fig.
1A). MBX2319 increases the potency of a broad range of anti-
biotics against E. coli and other Enterobacteriaceae and does not
exhibit membrane-disrupting or antibacterial activity (21). Impor-
tantly, MBX2319 fully potentiated the activity of levofloxacin and
piperacillin at concentrations as low as 3 μM, which is about an order
of magnitude lower than the concentrations required for full activity
of the earlier inhibitors mentioned above. Mechanism of action
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studies in E. coli indicated that the most likely target of MBX2319 is
AcrB. More recently, we described new derivatives of MBX2319
with increased activity. Notably MBX3132 and MBX3135 showed
full activity even at 0.1 μM, that is, at concentrations 500-fold lower
than the classical inhibitors like PAβN (22). Here, we report on
microbiological, crystallographic, and computational studies on the
interaction of AcrB with these novel and powerful inhibitors.

Results and Discussion
Crystallization of the AcrB Periplasmic Domain.To facilitate structural
studies of inhibitors and substrates bound to AcrB, we designed
a soluble form of the AcrB periplasmic domain (AcrBper) that
is composed of the two substrate binding periplasmic AcrB

loops (between transmembrane helices 1–2 and 7–8), which
are connected by a nine-residue linker (GGSGGSGGS). The
asymmetrical apo-AcrBper trimer was crystallized (diffracting
up to a resolution of 1.8 Å) in complex with three DARPin
(designed ankyrin repeat proteins) molecules (7) in space
group P212121 (Experimental Procedures).
Structural alignments of the AcrBper monomers with the peri-

plasmic domains of each protomer of the asymmetrical full-length
AcrB crystal forms [Protein Data Bank (PDB) ID code 4DX5,
P212121 space group; and PDB ID code 2GIF, C2 space group]
indicate that the AcrBper conformers (chains A, B, and C) are L-T
(access-access binding), respectively, hereafter referred to as LLT
(6, 23) (Fig. 1B). The PC1 subdomains (residues 595–605) of the
L conformers, but not the T conformer, are involved in crystal
contact of ∼400 Å2 with symmetry-related protomers. The T con-
former is involved in different and less substantial crystal contacts.
These crystal contacts most likely stabilize the LLT conformation,
resembling the stabilization by crystal contacts of the symmetrical
(LLL) full-length AcrB in the R32 lattice (24). The 3D structures
of the individual protomers of AcrBper are nearly identical to the
periplasmic domains of the L and T conformers of full-length AcrB
structures [PDB ID code 2GIF (6) and PDB ID code 4DX5 (23)],
and the rmsd values after Cα-alignment between individual pro-
tomers of AcrBper and the periplasmic domains of the L and
T protomers from full-length AcrB were below 0.7 Å (SI Appendix,
Fig. S1 and Table S1). The two L monomers within AcrBper were
nearly identical, with an rmsd of 0.24 Å. The (GGS)3 linker and
residues between Thr329 and Thr569, the loop region between
Pro669 and Thr676, and the residues C-terminal of Tyr864
appeared to be disordered, and electron densities for these regions
were not visible in any of the structures presented in this study.

Crystal Structure of AcrBper Bound to Minocycline and Rhodamine
6G. To confirm that the properties of the deep binding pocket
of the AcrBper T protomer are equivalent to the properties of
the deep binding pocket of full-length AcrB, we solved the crystal
structure of AcrBper with bound minocycline (MIN). We found
that MIN (SI Appendix, Fig. S2) binds to the same site on AcrBper
as has been previously reported for full-length AcrB (5, 10, 23). To
demonstrate that AcrBper retains broad substrate specificity (25,
26), we determined its structure in complex with Rhodamine 6G
(R6G) and found that R6G binds to a position in the deep binding
pocket of the T protomer that is similar to the position in doxo-
rubicin (23), where it interacts mainly with the F178 and F628 side
chains (Fig. 2). These results confirm that the substrate binding
properties of the T protomers of AcrBper are essentially identical
to the substrate binding properties of the full-length AcrB.

Structure of AcrBper in Complex with MBX2319. To determine
the structural basis of AcrB inhibition by MBX2319, we solved
the structure of MBX2319 bound to AcrBper. MBX2319 binds

A

B

Fig. 1. Structure of inhibitors and the inhibitor-bound AcrBper. (A) Chemical
structures of the studied MBX compounds. (B) Inhibitor binding is observed to
the hydrophobic trap and associated deep binding pocket distal from the
switch-loop (red) of the T monomer (yellow-colored cartoon) as represented by
the MBX3132 Fo-Fc omit map (greenmesh, contoured at 4.0 σ). The L protomers
of AcrBper are shown in a blue surface sphere and cartoon representation.

Fig. 2. R6G binding to AcrBper is observed in the
deep binding pocket of the T monomer. (A) Fo-Fc
omit map of the R6G ligand is shown as green mesh,
contoured at 3.0 σ. (B) Blue mesh (contoured at 1.0 σ)
represents the R6G 2Fo-Fc electron density map after
refinement of the complex structure. R6G is shown in
a ball-and-stick representation (carbon, magenta;
oxygen, red; nitrogen, blue). Side-chain residues of
the AcrB deep binding pocket are shown as sticks
(carbon, yellow; oxygen, red; nitrogen, blue).
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Fig. 3. Details of the binding of inhibitors with AcrBper. MBX2319 (A and B) and MBX2931 (C and D) mainly interact via hydrophobic stacking interactions
with residues comprising the deep binding pocket and the hydrophobic trap. MBX3132 (E and F) and MBX3135 (G and H) are additionally engaged in a water-
mediated hydrogen bond network, extending from the acetamide and acrylamide groups, respectively. Hydrogen bonds and water molecules are shown as
red lines (with distances in angstroms) and as cyan-colored spheres, respectively. MBX compounds are shown as sticks (carbon, gray; oxygen, red; nitrogen,
blue; sulfur, yellow). (Left) AcrB residues involved in inhibitor binding are shown as sticks (carbon, yellow; oxygen, red; nitrogen, blue; sulfur, gold), and the
2Fo-Fc electron density maps (blue-colored mesh) are contoured at 1.0 σ (MBX2319 and MBX2931) and at 1.5 σ (MBX3132 and MBX3135), respectively. (Right)
AcrB deep binding pocket surface is colored according to its hydrophobicity (red, hydrophobic; gray, hydrophilic), and the substrate pathway is indicated with
arrows. MBX compounds are shown in a ball-and-stick representation (cyan-colored carbon atoms).

Sjuts et al. PNAS | March 29, 2016 | vol. 113 | no. 13 | 3511

BI
O
CH

EM
IS
TR

Y



to the T protomer, and is engaged in multiple hydrophobic
interactions with various side chains lining the deep binding
pocket and hydrophobic trap (Fig. 3 A and B and SI Appendix,
Fig. S3) as previously predicted by molecular dynamics (MD)
simulation (27). The central, aromatic pyridine ring of MBX2319
is oriented parallel to the F628 aromatic side chain with a dis-
tance of ∼3.5 Å, resulting in an extensive π–π stacking in-
teraction. Similarly, the phenyl and morpholinyl groups interact
with F178 and F615 at a distance of ∼4 Å. The F610 side chain is
orthogonally packed against the dimethylenesulfide moiety of
MBX2319 that connects the pyranopyridine core to the phenyl
group. The side chains of Y327 and M573 bind to the gem-
dimethyl group (distance of ∼3.9 Å). An analysis by MD simulations
indicates that the F178 and F628 side chains are the major
contributors to the inferred tight binding (Table 1). The binding
location of MBX2319 on the T protomer of AcrB appears to be
similar to the binding location of the published pyridopyrimidine

inhibitor D13-9001 (20) (SIAppendix, Fig. S4), substantiating that the
hydrophobic trap is a promising target for EPIs. Furthermore,
MBX2319 appears to hinder the binding of other substrates (Fig. 3B).

Development and Characterization of Improved MBX Inhibitors. We
systematically varied the substituents around the pyranopyridine
core (22). We found that the nitrile, dimethylenesulfide, and gem-
dimethyl groups could not be varied without negatively affecting
the activity, whereas substitutions at the phenyl and morpholinyl
groups (MBX2931, MBX3132, and MBX3135) improved potency
and stability (Fig. 1A). In particular, the acetamide- and acrylam-
ide-containing compounds MBX3132 and MBX3135 exhibit a 10-
to 20-fold increase in potency compared with MBX2319 against a
panel of representative Enterobacteriaceae in checkerboard assays
(SI Appendix, Table S2) and in time-kill assays (Fig. 4 A–C).
Moreover, the increased potency of MBX3132 and MBX3135
against AcrAB-TolC is demonstrated by the increased levels of
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Fig. 4. Analogs of the pyranopyridine EPI MBX2319 exhibit improved efflux pump inhibition. The bactericidal activity of a minimally bactericidal dose of
ciprofloxacin (0.01 μg/mL) is potentiated against E. coli by MBX2319 (A), MBX3132 (B), and MBX3135 (C). The concentrations of MBX3132 and MBX3135 used
are 10-fold lower than the concentration of MBX2319. Inhibition of efflux pump activity is shown in a cell-based assay that measures accumulation of the
fluorescent dye H33342 in the presence of MBX2319 (D), MBX2931 (E), MBX3132 (F), and MBX3135 (G). Effect of 10 nM MBX2319 (H), MBX3132 (I), and
MBX3135 (J) on the Michaelis–Menten kinetics of AcrAB-TolC using the nitrocefin efflux assay (31). CIP, ciprofloxacin; Cmpd, MBX compound alone; Cp,
periplasmic concentration of nitrocefin (micromolar); RFU, relative fluorescence unit; Ve, efflux pump velocity (in nanomoles per second per milligram).
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accumulation of Hoechst 33342 (H33342), a fluorescent substrate
of AcrB, in E. coli AB1157 (Fig. 4 D–G), confirming efflux pump
inhibition. The accumulation of H33342 in the presence of 12.5 μM
MBX3132 or MBX3135 significantly exceeded the level of H33342
accumulation over the level of H33342 accumulation of the ΔacrB
strain (Fig. 4 F and G), suggesting that MBX3132 and MBX3135
inhibit additional RND family efflux pumps, because they do not
perturb the inner or outer E. coli membrane (22). In the presence
of 10 nM MBX3132 or MBX3135, the kinetics of AcrAB-TolC–
mediated nitrocefin efflux were severely affected, whereas the ef-
fect of 10 nM MBX2319 was negligible (Fig. 4 H–J). MBX2319
affects the nitrocefin efflux activity only at >200 nM (21).

Interaction Between AcrB and More Recent Analogs of MBX2319.
MBX2913, which shows no or only a slight improvement in po-
tency over MBX2319 (Fig. 4 and SI Appendix, Table S2), bound
similar to MBX2319 (Fig. 3 C and D), and the binding energy
contributed by the pocket was also similar, except for the in-
creased contribution by F615 (Table 1). In contrast, with
MBX3132 and MBX3135, which exhibited much stronger ac-
tivity (Fig. 4 and SI Appendix, Table S2), a stronger contribution
by F178 in the binding was evident (Table 1). A better indication
of stronger and more stable binding of these compounds can be
found in the greatly decreased temperature B-factors for these
compounds (Table 2).
Detailed analysis of high-resolution AcrBper crystal structures

containing these compounds was instructive (Fig. 3 E andG and SI
Appendix, Fig. S3). The respective acetamide and acrylamide ex-
tensions are engaged in sophisticated hydrogen bond networks
centered on a highly coordinated solvent water molecule (w1; Fig.
3 E and G and SI Appendix, Fig. S5), which serves as a hydrogen
bond donor to the AcrB A286 carbonyl backbone oxygen and the
Q151 side chain. In turn, w1 serves as a hydrogen bond acceptor
for the acetamide and acrylamide groups of MBX3132 and
MBX3135, respectively, and for another water molecule (w2). The
latter hydrogen bonds to the S155 hydroxyl side chain, the F178
carbonyl oxygen, and water molecule w3. Moreover, MBX3132
and MBX3135 form a hydrogen bond between the oxygen atom
of their morpholinyl group and another water molecule, which,

in turn, hydrogen-bonds to the Q176 side chain (w4; Fig. 3 E
and G and SI Appendix, Fig. S5). Presumably, these hydrogen
bond networks are critical for accurately positioning MBX3132 and
MBX3135 in the hydrophobic trap of AcrB, which is reflected in
the significantly reduced flexibilities for these compounds com-
pared with MBX2319 and MBX2931, as observed by the reduced
temperature factors andMD simulations (Table 2 and SI Appendix,
Table S3). Overall, MBX3132 and MBX3135 show a far more
substantial free energy release upon binding to AcrB than the free
energy release of a typical substrate, MIN (Table 1), or of the
earlier inhibitors PAβN and NMP (ca. 20–30 kcal/mol from MD
simulations) (26). It appears that the stabilized positioning of the
acetamide- and acrylamide-containing inhibitors contributes to this
tighter binding (Fig. 3 E and G, Table 2, and SI Appendix, Fig. S6
and Table S4). Thus, both structural and computational data
provide a consistent molecular explanation for the observed in-
creased potency of MBX3132 and MBX3135.

Conclusion
The high-resolution crystal structures described above show clearly
how these potent pyranopyridine inhibitors prevent the binding of
substrates to the deep binding pocket of AcrB substrates through
steric hindrance (Figs. 3 B, D, F, and H and 5). Because these
compounds bind more tightly than the usual substrates (Table 1),
effective inhibition can be achieved at low inhibitor concentrations.
It appears that all known potent inhibitors, including the MBX
compounds, bind to the hydrophobic trap. In this way, they may
prevent the T-to-O conformer transition, effectively preventing the
functional rotation of the AcrB trimer, which is similar to a
mechanism that has been proposed for the defect in efflux activity
of the AcrB F610A substitution (2, 28). Furthermore, the structures
provide a molecular rationale for further optimization of the pyr-
anopyridine EPIs, which can be used to improve the drug-like
properties of these compounds while maintaining or improving
potency (a possible site of extension is shown in Fig. 6). The high-
resolution structures of the MBX–AcrBper complexes allow the
unambiguous assignment of inhibitor and side-chain positions, co-
ordinated water molecules and the resulting interactions. This
knowledge, combined with atomistic simulations, enables a more

A B C
Fig. 5. MBX compound binding site overlaps with
substrate binding sites. The superimposition of
MBX3132 coordinates (carbon, cyan; oxygen, red;
nitrogen, blue; sulfur, yellow) with MIN [A; carbon,
green; PDB ID code 4DX5 (21)], R6G (B; carbon, ma-
genta; this study), and doxorubicin [C; carbon, or-
ange; PDB ID code 4DX7 (21)] is shown, indicating
that the EPI sterically prevents substrate binding to
the AcrB deep binding pocket. AcrB side chains in-
volved in the binding of substrates or EPIs are in-
dicated and shown as sticks (carbon, yellow).

Table 1. In silico thermodynamics of MBX binding to the AcrB deep binding pocket and hydrophobic trap

The free energies of binding (ΔGb) and the relative per-residue contributions (in kilocalories per mole) were calculated for the
inhibitors MBX2319, MBX2931, MBX3132, and MBX3135 bound to AcrB. The values are compared with estimates calculated for MIN
(23). Cells reporting per-residue free energies are colored according to the value of the contribution, from red (largest) to light
yellow (lowest). Only residues contributing more than ∼0.6 kcal/mol (kBT at room temperature, where kB is the Boltzmann constant and
T is the absolute temperature) are reported. Residues contributing to the binding of all four MBX inhibitors are underlined, and
residues comprising the hydrophobic trap (19) are shown in bold.
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reliable assignment of free energy contributions between ligands,
protein, and solvent, which is a necessary prerequisite for structure-
based drug design (29). The successful production of well-diffracting
AcrBper crystals will also enable convenient structural analysis of
substrate binding to AcrB in a detergent-free background. This
development should guide the future exploitation of additional
substrate and inhibitor binding to AcrB and other RND family
homologs for which structural data are sparse.

Experimental Procedures
Most of the microbiological methods were described earlier (21). The gene
coding for AcrBper was created by amplifying the acrB segments coding
for A39-T329 and S561-S869 with primers that connect the two regions via
a GGSGGSGGS linker upon BamHI digestion and ligation (30). AcrBper was
expressed in E. coli MC1061 (30) and was purified by using its C-terminal
His tag sequence. A vapor diffusion technique was used for crystalliza-
tion, and ligands were introduced by soaking. Details are described in
SI Appendix.
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Table 2. Temperature factor B from crystallography and RMSF
and B factor from MD trajectories

Compound

B-factor, Å2 RMSF, Å B-factor, Å2

Crystallography MD simulation

MBX2319 52.4 1.31 45.2
MBX2931 52.2 1.19 37.2
MBX3132 29.7 0.88 20.3
MBX3135 27.4 0.95 23.5

RMSF, rms fluctuation.

Fig. 6. Hydrophilic, water-filled cavity provides potential for MBX inhibitor
improvement. The AcrB deep binding pocket surface is colored as in Fig. 1.
MBX3132 is shown in a ball-and-stick representation (carbon, cyan; oxygen, red;
nitrogen, blue; sulfur, yellow). Coordinated water molecules in the extended
hydrophilic pocket between the acetamide moiety of MBX3132 and residues
179–181 and 271–277 (shown as sticks) are shown as orange spheres. Aug-
mented inhibitors could potentially protrude into this solvent-filled pocket.
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